On the Hurwitz function for rational arguments
نویسنده
چکیده
Using functional properties of the Hurwitz zeta function and symbolic derivatives of the trigonometric functions, the function ζ(2n + 1, p/q) is expressed in several ways in terms of other mathematical functions and numbers, including in particular the Glaisher numbers. 2000 Mathematics Subject Classification. Primary 11M35, 33B99. Secondary 11B75, 33E20.
منابع مشابه
Values of the Legendre chi and Hurwitz zeta functions at rational arguments
We show that the Hurwitz zeta function, ζ(ν, a), and the Legendre chi function, χν(z), defined by ζ(ν, a) = ∞ ∑ k=0 1 (k + a)ν , 0 < a ≤ 1, Re ν > 1, and χν(z) = ∞ ∑ k=0 z2k+1 (2k + 1)ν , |z| ≤ 1, Re ν > 1 with ν = 2, 3, 4, . . . , respectively, form a discrete Fourier transform pair. Many formulae involving the values of these functions at rational arguments, most of them unknown, are obtained...
متن کاملSome discrete Fourier transform pairs associated with the Lipschitz-Lerch Zeta function
Keywords: Hurwitz–Lerch Zeta function Lipschitz–Lerch Zeta function Lerch Zeta function Hurwitz Zeta function Riemann Zeta function Legendre chi function Bernoulli polynomials Bernoulli numbers Discrete Fourier transform a b s t r a c t It is shown that there exists a companion formula to Srivastava's formula for the Lipschitz–Lerch Zeta function [see H.M. Srivastava, Some formulas for the Bern...
متن کاملOn representations and differences of Stieltjes coefficients, and other relations
The Stieltjes coefficients γk(a) arise in the expansion of the Hurwitz zeta function ζ(s, a) about its single simple pole at s = 1 and are of fundamental and long-standing importance in analytic number theory and other disciplines. We present an array of exact results for the Stieltjes coefficients, including series representations and summatory relations. Other integral representations provide...
متن کاملFourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials
We investigate Fourier expansions for the Apostol-Bernoulli and Apostol-Euler polynomials using the Lipschitz summation formula and obtain their integral representations. We give some explicit formulas at rational arguments for these polynomials in terms of the Hurwitz zeta function. We also derive the integral representations for the classical Bernoulli and Euler polynomials and related known ...
متن کاملGeometric Studies on Inequalities of Harmonic Functions in a Complex Field Based on ξ-Generalized Hurwitz-Lerch Zeta Function
Authors, define and establish a new subclass of harmonic regular schlicht functions (HSF) in the open unit disc through the use of the extended generalized Noor-type integral operator associated with the ξ-generalized Hurwitz-Lerch Zeta function (GHLZF). Furthermore, some geometric properties of this subclass are also studied.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 187 شماره
صفحات -
تاریخ انتشار 2007